Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{1}{0.5+i}+\frac{2}{3+2i}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{4i+3}{2i^2+3i} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{4i+3}{-2+3i} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{6-17i}{13}\end{aligned} $$ | |
| ① | Add $ \dfrac{1}{0+i} $ and $ \dfrac{2}{3+2i} $ to get $ \dfrac{ \color{purple}{ 4i+3 } }{ 2i^2+3i }$. To add raitonal expressions, both fractions must have the same denominator. |
| ② | $$ 2i^2 = 2 \cdot (-1) = -2 $$ |
| ③ | Divide $ \, 3+4i \, $ by $ \, -2+3i \, $ to get $\,\, \dfrac{6-17i}{13} $. ( view steps ) |