Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{1}{-100i}+\frac{1}{9.9+99.01i}& \xlongequal{ }\frac{1}{-100i}+\frac{1}{9.9+99i} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{-i+9}{-9900i^2-900i} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-i+9}{9900-900i} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{50-i}{54900}\end{aligned} $$ | |
| ① | Add $ \dfrac{1}{-100i} $ and $ \dfrac{1}{9+99i} $ to get $ \dfrac{ \color{purple}{ -i+9 } }{ -9900i^2-900i }$. To add raitonal expressions, both fractions must have the same denominator. |
| ② | $$ -9900i^2 = -9900 \cdot (-1) = 9900 $$ |
| ③ | Divide $ \, 9-i \, $ by $ \, 9900-900i \, $ to get $\,\, \dfrac{50-i}{54900} $. ( view steps ) |