Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{1}{\frac{1}{\frac{1500}{13}+7500\frac{i}{13}}+\frac{1}{93+42i}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{1}{\frac{1}{\frac{1500}{13}+\frac{7500i}{13}}+\frac{1}{93+42i}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{1}{\frac{1}{\frac{7500i+1500}{13}}+\frac{1}{93+42i}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{1}{\frac{13}{7500i+1500}+\frac{1}{93+42i}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{1}{\frac{2682i+903}{105000i^2+253500i+46500}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{1}{\frac{2682i+903}{-105000+253500i+46500}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{1}{\frac{2682i+903}{253500i-58500}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} } }}}\frac{1}{\frac{10719-6595i}{1157000}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}\frac{1157000}{-6595i+10719}\end{aligned} $$ | |
| ① | Multiply $7500$ by $ \dfrac{i}{13} $ to get $ \dfrac{ 7500i }{ 13 } $. Step 1: Write $ 7500 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 7500 \cdot \frac{i}{13} & \xlongequal{\text{Step 1}} \frac{7500}{\color{red}{1}} \cdot \frac{i}{13} \xlongequal{\text{Step 2}} \frac{ 7500 \cdot i }{ 1 \cdot 13 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 7500i }{ 13 } \end{aligned} $$ |
| ② | Add $ \dfrac{1500}{13} $ and $ \dfrac{7500i}{13} $ to get $ \dfrac{7500i+1500}{13} $. To add expressions with the same denominators, we add the numerators and write the result over the common denominator. $$ \begin{aligned} \frac{1500}{13} + \frac{7500i}{13} & = \frac{1500}{\color{blue}{13}} + \frac{7500i}{\color{blue}{13}} =\frac{ 1500 + 7500i }{ \color{blue}{ 13 }} = \\[1ex] &= \frac{7500i+1500}{13} \end{aligned} $$ |
| ③ | Divide $1$ by $ \dfrac{7500i+1500}{13} $ to get $ \dfrac{ 13 }{ 7500i+1500 } $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Write $ 1 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{ \frac{\color{blue}{7500i+1500}}{\color{blue}{13}} } & \xlongequal{\text{Step 1}} 1 \cdot \frac{\color{blue}{13}}{\color{blue}{7500i+1500}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{1}{\color{red}{1}} \cdot \frac{13}{7500i+1500} \xlongequal{\text{Step 3}} \frac{ 1 \cdot 13 }{ 1 \cdot \left( 7500i+1500 \right) } = \\[1ex] & \xlongequal{\text{Step 4}} \frac{ 13 }{ 7500i+1500 } \end{aligned} $$ |
| ④ | Add $ \dfrac{13}{7500i+1500} $ and $ \dfrac{1}{93+42i} $ to get $ \dfrac{ \color{purple}{ 2682i+903 } }{ 105000i^2+253500i+46500 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ⑤ | $$ 105000i^2 = 105000 \cdot (-1) = -105000 $$ |
| ⑥ | Combine like terms: $$ \color{blue}{-105000} +253500i+ \color{blue}{46500} = 253500i \color{blue}{-58500} $$ |
| ⑦ | Divide $ \, 903+2682i \, $ by $ \, -58500+253500i \, $ to get $\,\, \dfrac{10719-6595i}{1157000} $. ( view steps ) |
| ⑧ | Divide $1$ by $ \dfrac{10719-6595i}{1157000} $ to get $ \dfrac{1157000}{-6595i+10719} $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Write $ 1 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{1}{ \frac{\color{blue}{10719-6595i}}{\color{blue}{1157000}} } & \xlongequal{\text{Step 1}} 1 \cdot \frac{\color{blue}{1157000}}{\color{blue}{10719-6595i}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{1}{\color{red}{1}} \cdot \frac{1157000}{10719-6595i} \xlongequal{\text{Step 3}} \frac{ 1 \cdot 1157000 }{ 1 \cdot \left( 10719-6595i \right) } = \\[1ex] & \xlongequal{\text{Step 4}} \frac{ 1157000 }{ 10719-6595i } = \frac{1157000}{-6595i+10719} \end{aligned} $$ |