Tap the blue circles to see an explanation.
| $$ \begin{aligned}-7(3x+3)^2+6& \xlongequal{ }-7(9x^2+18x+9)+6 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(63x^2+126x+63)+6 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-63x^2-126x-63+6 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-63x^2-126x-57\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{7} $ by $ \left( 9x^2+18x+9\right) $ $$ \color{blue}{7} \cdot \left( 9x^2+18x+9\right) = 63x^2+126x+63 $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left(63x^2+126x+63 \right) = -63x^2-126x-63 $$ |
| ③ | Combine like terms: $$ -63x^2-126x \color{blue}{-63} + \color{blue}{6} = -63x^2-126x \color{blue}{-57} $$ |