Tap the blue circles to see an explanation.
| $$ \begin{aligned}-6i\cdot(8-6i)\cdot(-8-8i)& \xlongequal{ }-(48i-36i^2)\cdot(-8-8i) \xlongequal{ } \\[1 em] & \xlongequal{ }-(48i+36)\cdot(-8-8i) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(-384i-384i^2-288-288i) \xlongequal{ } \\[1 em] & \xlongequal{ }-(-384i^2-672i-288) \xlongequal{ } \\[1 em] & \xlongequal{ }-(384-672i-288) \xlongequal{ } \\[1 em] & \xlongequal{ }-(-672i+96) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}672i-96\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{48i+36}\right) $ by each term in $ \left( -8-8i\right) $. $$ \left( \color{blue}{48i+36}\right) \cdot \left( -8-8i\right) = -384i-384i^2-288-288i $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left(-672i+96 \right) = 672i-96 $$ |