Tap the blue circles to see an explanation.
| $$ \begin{aligned}-5 \cdot \frac{i}{2}-5\frac{i}{4}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(-\frac{i}{2}-\frac{i}{4})\cdot5 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(-\frac{3i}{4})\cdot5 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-\frac{15i}{4}\end{aligned} $$ | |
| ① | Use the distributive property. |
| ② | Subtract $ \dfrac{i}{4} $ from $ \dfrac{-i}{2} $ to get $ \dfrac{ \color{purple}{ -3i } }{ 4 }$. To subtract raitonal expressions, both fractions must have the same denominator. |
| ③ | Multiply $ \dfrac{-3i}{4} $ by $ 5 $ to get $ \dfrac{ -15i }{ 4 } $. Step 1: Write $ 5 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{-3i}{4} \cdot 5 & \xlongequal{\text{Step 1}} \frac{-3i}{4} \cdot \frac{5}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( -3i \right) \cdot 5 }{ 4 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ -15i }{ 4 } \end{aligned} $$ |