Tap the blue circles to see an explanation.
| $$ \begin{aligned}-5(-5i)\cdot(-3+7i)& \xlongequal{ }--25i\cdot(-3+7i) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(75i-175i^2) \xlongequal{ } \\[1 em] & \xlongequal{ }-(75i+175) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-75i-175\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{-25i} $ by $ \left( -3+7i\right) $ $$ \color{blue}{-25i} \cdot \left( -3+7i\right) = 75i-175i^2 $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left(75i+175 \right) = -75i-175 $$ |