Tap the blue circles to see an explanation.
| $$ \begin{aligned}-3i(8i+5)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(24i^2+15i) \xlongequal{ } \\[1 em] & \xlongequal{ }-(-24+15i) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}24-15i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-15i+24\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{3i} $ by $ \left( 8i+5\right) $ $$ \color{blue}{3i} \cdot \left( 8i+5\right) = 24i^2+15i $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left(-24+15i \right) = 24-15i $$ |
| ③ | Combine like terms: $$ -15i+24 = -15i+24 $$ |