Tap the blue circles to see an explanation.
| $$ \begin{aligned}-1-2i-(1+i)\frac{\frac{74-27i}{51}}{-3-2i}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-1-2i-(1+i)\frac{-27i+74}{-102i-153} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-1-2i-(1+i)\frac{-168+229i}{663} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-1-2i-\frac{229i^2+61i-168}{663} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}-1-2i-\frac{-229+61i-168}{663} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}-1-2i-\frac{61i-397}{663} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{-1387i-266}{663}\end{aligned} $$ | |
| ① | Divide $ \dfrac{74-27i}{51} $ by $ -3-2i $ to get $ \dfrac{-27i+74}{-102i-153} $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{74-27i}{51} }{-3-2i} & \xlongequal{\text{Step 1}} \frac{74-27i}{51} \cdot \frac{\color{blue}{1}}{\color{blue}{-3-2i}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ \left( 74-27i \right) \cdot 1 }{ 51 \cdot \left( -3-2i \right) } \xlongequal{\text{Step 3}} \frac{ 74-27i }{ -153-102i } = \\[1ex] &= \frac{-27i+74}{-102i-153} \end{aligned} $$ |
| ② | Divide $ \, 74-27i \, $ by $ \, -153-102i \, $ to get $\,\, \dfrac{-168+229i}{663} $. ( view steps ) |
| ③ | Multiply $1+i$ by $ \dfrac{-168+229i}{663} $ to get $ \dfrac{229i^2+61i-168}{663} $. Step 1: Write $ 1+i $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 1+i \cdot \frac{-168+229i}{663} & \xlongequal{\text{Step 1}} \frac{1+i}{\color{red}{1}} \cdot \frac{-168+229i}{663} \xlongequal{\text{Step 2}} \frac{ \left( 1+i \right) \cdot \left( -168+229i \right) }{ 1 \cdot 663 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ -168+229i-168i+229i^2 }{ 663 } = \frac{229i^2+61i-168}{663} \end{aligned} $$ |
| ④ | $$ 229i^2 = 229 \cdot (-1) = -229 $$ |
| ⑤ | Combine like terms: $$ \color{blue}{-229} +61i \color{blue}{-168} = 61i \color{blue}{-397} $$ |
| ⑥ | Subtract $ \dfrac{61i-397}{663} $ from $ -1-2i $ to get $ \dfrac{ \color{purple}{ -1387i-266 } }{ 663 }$. Step 1: Write $ -1-2i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |