Tap the blue circles to see an explanation.
| $$ \begin{aligned}-\frac{1}{(0.6+2j)^2}-\frac{1}{0.6+2j}-1& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-\frac{1}{0+0j+4j^2}-\frac{1}{0.6+2j}-1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-4j^2-2j}{8j^3}-1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-8j^3-4j^2-2j}{8j^3}\end{aligned} $$ | |
| ① | Find $ \left(0+2j\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 0 } $ and $ B = \color{red}{ 2j }$. $$ \begin{aligned}\left(0+2j\right)^2 = \color{blue}{0^2} +2 \cdot 0 \cdot 2j + \color{red}{\left( 2j \right)^2} = 00j+4j^2\end{aligned} $$ |
| ② | Subtract $ \dfrac{1}{0+2j} $ from $ \dfrac{-1}{00j+4j^2} $ to get $ \dfrac{ \color{purple}{ -4j^2-2j } }{ 8j^3 }$. To subtract raitonal expressions, both fractions must have the same denominator. |
| ③ | Subtract $1$ from $ \dfrac{-4j^2-2j}{8j^3} $ to get $ \dfrac{ \color{purple}{ -8j^3-4j^2-2j } }{ 8j^3 }$. Step 1: Write $ 1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |