Tap the blue circles to see an explanation.
| $$ \begin{aligned}-0.5(4x-8)+14x+3& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-(0x+0)+14x+3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}0x+0+14x+3 \xlongequal{ } \\[1 em] & \xlongequal{ }0x0+14x+3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}14x+3\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{0} $ by $ \left( 4x-8\right) $ $$ \color{blue}{0} \cdot \left( 4x-8\right) = 0x0 $$ |
| ② | Remove the parentheses by changing the sign of each term within them. $$ - \left(0x0 \right) = 0x0 $$ |
| ③ | Combine like terms: $$ \color{blue}{0x} \color{red}{0} + \color{blue}{14x} + \color{red}{3} = \color{blue}{14x} + \color{red}{3} $$ |