Tap the blue circles to see an explanation.
| $$ \begin{aligned}-(iwp-tiw\frac{x}{o})\frac{f}{ywif+1}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(iwp-\frac{itwx}{o})\frac{f}{ywif+1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{iopw-itwx}{o}\frac{f}{ywif+1} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{fiopw-fitwx}{fiowy+o}\end{aligned} $$ | |
| ① | Multiply $itw$ by $ \dfrac{x}{o} $ to get $ \dfrac{ itwx }{ o } $. Step 1: Write $ itw $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} itw \cdot \frac{x}{o} & \xlongequal{\text{Step 1}} \frac{itw}{\color{red}{1}} \cdot \frac{x}{o} \xlongequal{\text{Step 2}} \frac{ itw \cdot x }{ 1 \cdot o } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ itwx }{ o } \end{aligned} $$ |
| ② | Subtract $ \dfrac{itwx}{o} $ from $ ipw $ to get $ \dfrac{ \color{purple}{ iopw-itwx } }{ o }$. Step 1: Write $ ipw $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ③ | Multiply $ \dfrac{iopw-itwx}{o} $ by $ \dfrac{f}{fiwy+1} $ to get $ \dfrac{ fiopw-fitwx }{ fiowy+o } $. Step 1: Multiply numerators and denominators. Step 2: Simplify numerator and denominator. $$ \begin{aligned} \frac{iopw-itwx}{o} \cdot \frac{f}{fiwy+1} & \xlongequal{\text{Step 1}} \frac{ \left( iopw-itwx \right) \cdot f }{ o \cdot \left( fiwy+1 \right) } = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ fiopw-fitwx }{ fiowy+o } \end{aligned} $$ |