Tap the blue circles to see an explanation.
| $$ \begin{aligned}-(-3 \cdot \frac{i}{10}+\frac{8}{5})-(3-\frac{i}{5})& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-\frac{3i}{10}+\frac{8}{5}-\frac{-i+15}{5} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-3i+16}{10}-\frac{-i+15}{5} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{-i-14}{10}\end{aligned} $$ | |
| ① | Multiply $3$ by $ \dfrac{i}{10} $ to get $ \dfrac{ 3i }{ 10 } $. Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 3 \cdot \frac{i}{10} & \xlongequal{\text{Step 1}} \frac{3}{\color{red}{1}} \cdot \frac{i}{10} \xlongequal{\text{Step 2}} \frac{ 3 \cdot i }{ 1 \cdot 10 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 3i }{ 10 } \end{aligned} $$ |
| ② | Subtract $ \dfrac{i}{5} $ from $ 3 $ to get $ \dfrac{ \color{purple}{ -i+15 } }{ 5 }$. Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ③ | Add $ \dfrac{-3i}{10} $ and $ \dfrac{8}{5} $ to get $ \dfrac{ \color{purple}{ -3i+16 } }{ 10 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ④ | Subtract $ \dfrac{i}{5} $ from $ 3 $ to get $ \dfrac{ \color{purple}{ -i+15 } }{ 5 }$. Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ⑤ | Subtract $ \dfrac{-i+15}{5} $ from $ \dfrac{-3i+16}{10} $ to get $ \dfrac{ \color{purple}{ -i-14 } }{ 10 }$. To subtract raitonal expressions, both fractions must have the same denominator. |