Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x+5-5i)(x-5+5i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-25i^2+x^2+50i-25\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x+5-5i}\right) $ by each term in $ \left( x-5+5i\right) $. $$ \left( \color{blue}{x+5-5i}\right) \cdot \left( x-5+5i\right) = \\ = x^2 -\cancel{5x}+ \cancel{5ix}+ \cancel{5x}-25+25i -\cancel{5ix}+25i-25i^2 $$ |
| ② | Combine like terms: $$ x^2 \, \color{blue}{ -\cancel{5x}} \,+ \, \color{green}{ \cancel{5ix}} \,+ \, \color{blue}{ \cancel{5x}} \,-25+ \color{blue}{25i} \, \color{green}{ -\cancel{5ix}} \,+ \color{blue}{25i} -25i^2 = -25i^2+x^2+ \color{blue}{50i} -25 $$ |