Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x+2i)\cdot(3-2xi)+2x^2i& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3x-2ix^2+6i-4i^2x+2x^2i \xlongequal{ } \\[1 em] & \xlongequal{ }3x -\cancel{2ix^2}+6i-4i^2x+ \cancel{2ix^2} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-4i^2x+6i+3x\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x+2i}\right) $ by each term in $ \left( 3-2ix\right) $. $$ \left( \color{blue}{x+2i}\right) \cdot \left( 3-2ix\right) = 3x-2ix^2+6i-4i^2x $$ |
| ② | Combine like terms: $$ 3x \, \color{blue}{ -\cancel{2ix^2}} \,+6i-4i^2x+ \, \color{blue}{ \cancel{2ix^2}} \, = -4i^2x+6i+3x $$ |