Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{x+2}{4(x+2)}-\frac{2}{3}(x+2)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(\frac{1}{4(x+2)}-\frac{2}{3})(x+2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(\frac{1}{4x+8}-\frac{2}{3})(x+2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-8x-13}{12x+24}(x+2) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{-8x-13}{12}\end{aligned} $$ | |
| ① | Use the distributive property. |
| ② | Multiply $ \color{blue}{4} $ by $ \left( x+2\right) $ $$ \color{blue}{4} \cdot \left( x+2\right) = 4x+8 $$ |
| ③ | Subtract $ \dfrac{2}{3} $ from $ \dfrac{1}{4x+8} $ to get $ \dfrac{ \color{purple}{ -8x-13 } }{ 12x+24 }$. To subtract raitonal expressions, both fractions must have the same denominator. |
| ④ | Multiply $ \dfrac{-8x-13}{12x+24} $ by $ x+2 $ to get $ \dfrac{ -8x-13 }{ 12 } $. Step 1: Write $ x+2 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Factor numerators and denominators. Step 3: Cancel common factors. Step 4: Multiply numerators and denominators. Step 5: Simplify numerator and denominator. $$ \begin{aligned} \frac{-8x-13}{12x+24} \cdot x+2 & \xlongequal{\text{Step 1}} \frac{-8x-13}{12x+24} \cdot \frac{x+2}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ -8x-13 }{ 12 \cdot \color{red}{ \left( x+2 \right) } } \cdot \frac{ 1 \cdot \color{red}{ \left( x+2 \right) } }{ 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ -8x-13 }{ 12 } \cdot \frac{ 1 }{ 1 } \xlongequal{\text{Step 4}} \frac{ \left( -8x-13 \right) \cdot 1 }{ 12 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 5}} \frac{ -8x-13 }{ 12 } \end{aligned} $$ |