Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{x+2}{4(x+2)}-\frac{2}{3(x+2)}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{x+2}{4x+8}-\frac{2}{3x+6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{1}{4}-\frac{2}{3x+6} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{3x-2}{12x+24}\end{aligned} $$ | |
| ① | Multiply $ \color{blue}{4} $ by $ \left( x+2\right) $ $$ \color{blue}{4} \cdot \left( x+2\right) = 4x+8 $$ |
| ② | Multiply $ \color{blue}{3} $ by $ \left( x+2\right) $ $$ \color{blue}{3} \cdot \left( x+2\right) = 3x+6 $$ |
| ③ | Simplify $ \dfrac{x+2}{4x+8} $ to $ \dfrac{1}{4} $. Factor both the denominator and the numerator, then cancel the common factor. $\color{blue}{x+2}$. $$ \begin{aligned} \frac{x+2}{4x+8} & =\frac{ 1 \cdot \color{blue}{ \left( x+2 \right) }}{ 4 \cdot \color{blue}{ \left( x+2 \right) }} = \\[1ex] &= \frac{1}{4} \end{aligned} $$ |
| ④ | Subtract $ \dfrac{2}{3x+6} $ from $ \dfrac{1}{4} $ to get $ \dfrac{ \color{purple}{ 3x-2 } }{ 12x+24 }$. To subtract raitonal expressions, both fractions must have the same denominator. |