Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x-4i)(x+4i)(x-\frac{3}{5})& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x^2+4ix-4ix-16i^2)(x-\frac{3}{5}) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}(-16i^2+x^2)(x-\frac{3}{5}) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}(16+x^2)\frac{5x-3}{5} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} } }}}\frac{5x^3-3x^2+80x-48}{5}\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{x-4i}\right) $ by each term in $ \left( x+4i\right) $. $$ \left( \color{blue}{x-4i}\right) \cdot \left( x+4i\right) = x^2+ \cancel{4ix} -\cancel{4ix}-16i^2 $$ |
| ② | Combine like terms: $$ x^2+ \, \color{blue}{ \cancel{4ix}} \, \, \color{blue}{ -\cancel{4ix}} \,-16i^2 = -16i^2+x^2 $$ |
| ③ | $$ -16i^2 = -16 \cdot (-1) = 16 $$ |
| ④ | Subtract $ \dfrac{3}{5} $ from $ x $ to get $ \dfrac{ \color{purple}{ 5x-3 } }{ 5 }$. Step 1: Write $ x $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ⑤ | Multiply $16+x^2$ by $ \dfrac{5x-3}{5} $ to get $ \dfrac{5x^3-3x^2+80x-48}{5} $. Step 1: Write $ 16+x^2 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 16+x^2 \cdot \frac{5x-3}{5} & \xlongequal{\text{Step 1}} \frac{16+x^2}{\color{red}{1}} \cdot \frac{5x-3}{5} \xlongequal{\text{Step 2}} \frac{ \left( 16+x^2 \right) \cdot \left( 5x-3 \right) }{ 1 \cdot 5 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 80x-48+5x^3-3x^2 }{ 5 } = \frac{5x^3-3x^2+80x-48}{5} \end{aligned} $$ |