Tap the blue circles to see an explanation.
| $$ \begin{aligned}(x-(2+6i))(x-(2-6i))& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}(x-2-6i)(x-2+6i) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-36i^2+x^2-4x+4\end{aligned} $$ | |
| ① | Remove the parentheses by changing the sign of each term within them. $$ - \left( 2+6i \right) = -2-6i $$Remove the parentheses by changing the sign of each term within them. $$ - \left( 2-6i \right) = -2+6i $$ |
| ② | Multiply each term of $ \left( \color{blue}{x-2-6i}\right) $ by each term in $ \left( x-2+6i\right) $. $$ \left( \color{blue}{x-2-6i}\right) \cdot \left( x-2+6i\right) = \\ = x^2-2x+ \cancel{6ix}-2x+4 -\cancel{12i} -\cancel{6ix}+ \cancel{12i}-36i^2 $$ |
| ③ | Combine like terms: $$ x^2 \color{blue}{-2x} + \, \color{red}{ \cancel{6ix}} \, \color{blue}{-2x} +4 \, \color{orange}{ -\cancel{12i}} \, \, \color{red}{ -\cancel{6ix}} \,+ \, \color{orange}{ \cancel{12i}} \,-36i^2 = -36i^2+x^2 \color{blue}{-4x} +4 $$ |