Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\frac{x^2}{36}+\frac{1}{3}}{\frac{x+1}{9}-\frac{1}{3}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{\frac{x^2+12}{36}}{\frac{x-2}{9}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{9x^2+108}{36x-72} \xlongequal{ } \\[1 em] & \xlongequal{ }\frac{x^2+12}{4x-8}\end{aligned} $$ | |
| ① | Add $ \dfrac{x^2}{36} $ and $ \dfrac{1}{3} $ to get $ \dfrac{ \color{purple}{ x^2+12 } }{ 36 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ② | Subtract $ \dfrac{1}{3} $ from $ \dfrac{x+1}{9} $ to get $ \dfrac{ \color{purple}{ x-2 } }{ 9 }$. To subtract raitonal expressions, both fractions must have the same denominator. |
| ③ | Divide $ \dfrac{x^2+12}{36} $ by $ \dfrac{x-2}{9} $ to get $ \dfrac{ 9x^2+108 }{ 36x-72 } $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{x^2+12}{36} }{ \frac{\color{blue}{x-2}}{\color{blue}{9}} } & \xlongequal{\text{Step 1}} \frac{x^2+12}{36} \cdot \frac{\color{blue}{9}}{\color{blue}{x-2}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ \left( x^2+12 \right) \cdot 9 }{ 36 \cdot \left( x-2 \right) } \xlongequal{\text{Step 3}} \frac{ 9x^2+108 }{ 36x-72 } \end{aligned} $$ |