Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\frac{x}{16}-\frac{1}{18}}{\frac{1}{9}+\frac{1}{12}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{\frac{9x-8}{144}}{\frac{7}{36}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{324x-288}{1008}\end{aligned} $$ | |
| ① | Subtract $ \dfrac{1}{18} $ from $ \dfrac{x}{16} $ to get $ \dfrac{ \color{purple}{ 9x-8 } }{ 144 }$. To subtract raitonal expressions, both fractions must have the same denominator. |
| ② | Add $ \dfrac{1}{9} $ and $ \dfrac{1}{12} $ to get $ \dfrac{ \color{purple}{ 7 } }{ 36 }$. To add fractions they must have the same denominator. |
| ③ | Divide $ \dfrac{9x-8}{144} $ by $ \dfrac{7}{36} $ to get $ \dfrac{ 324x-288 }{ 1008 } $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{9x-8}{144} }{ \frac{\color{blue}{7}}{\color{blue}{36}} } & \xlongequal{\text{Step 1}} \frac{9x-8}{144} \cdot \frac{\color{blue}{36}}{\color{blue}{7}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ \left( 9x-8 \right) \cdot 36 }{ 144 \cdot 7 } \xlongequal{\text{Step 3}} \frac{ 324x-288 }{ 1008 } \end{aligned} $$ |