Tap the blue circles to see an explanation.
| $$ \begin{aligned}(sqrt-7)(sqrt-14)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}q^2r^2s^2t^2-14qrst-7qrst+98 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}q^2r^2s^2t^2-21qrst+98\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{qrst-7}\right) $ by each term in $ \left( qrst-14\right) $. $$ \left( \color{blue}{qrst-7}\right) \cdot \left( qrst-14\right) = q^2r^2s^2t^2-14qrst-7qrst+98 $$ |
| ② | Combine like terms: $$ q^2r^2s^2t^2 \color{blue}{-14qrst} \color{blue}{-7qrst} +98 = q^2r^2s^2t^2 \color{blue}{-21qrst} +98 $$ |