Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{r-5}{(r-1)(r-8)}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{r-5}{r^2-8r-r+8} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{r-5}{r^2-9r+8}\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{r-1}\right) $ by each term in $ \left( r-8\right) $. $$ \left( \color{blue}{r-1}\right) \cdot \left( r-8\right) = r^2-8r-r+8 $$ |
| ② | Simplify denominator $$ r^2 \color{blue}{-8r} \color{blue}{-r} +8 = r^2 \color{blue}{-9r} +8 $$ |