Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{i-1}{(1+cos2p\frac{i}{5})i+sin2p\frac{i}{5}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{i-1}{(1+cos\frac{2ip}{5})i+sin\frac{2ip}{5}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}\frac{i-1}{(1+\frac{2ciops}{5})i+\frac{2i^2nps}{5}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle5}{\textcircled {5}} \htmlClass{explanationCircle explanationCircle6}{\textcircled {6}} } }}}\frac{i-1}{\frac{2ciops+5}{5}i+\frac{2i^2nps}{5}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle7}{\textcircled {7}} \htmlClass{explanationCircle explanationCircle8}{\textcircled {8}} } }}}\frac{i-1}{\frac{2ci^2ops+5i}{5}+\frac{2i^2nps}{5}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle9}{\textcircled {9}} } }}}\frac{i-1}{\frac{2ci^2ops+2i^2nps+5i}{5}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle10}{\textcircled {10}} } }}}\frac{5i-5}{2ci^2ops+2i^2nps+5i}\end{aligned} $$ | |
| ① | Multiply $2p$ by $ \dfrac{i}{5} $ to get $ \dfrac{ 2ip }{ 5 } $. Step 1: Write $ 2p $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 2p \cdot \frac{i}{5} & \xlongequal{\text{Step 1}} \frac{2p}{\color{red}{1}} \cdot \frac{i}{5} \xlongequal{\text{Step 2}} \frac{ 2p \cdot i }{ 1 \cdot 5 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2ip }{ 5 } \end{aligned} $$ |
| ② | Multiply $2p$ by $ \dfrac{i}{5} $ to get $ \dfrac{ 2ip }{ 5 } $. Step 1: Write $ 2p $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} 2p \cdot \frac{i}{5} & \xlongequal{\text{Step 1}} \frac{2p}{\color{red}{1}} \cdot \frac{i}{5} \xlongequal{\text{Step 2}} \frac{ 2p \cdot i }{ 1 \cdot 5 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2ip }{ 5 } \end{aligned} $$ |
| ③ | Multiply $cos$ by $ \dfrac{2ip}{5} $ to get $ \dfrac{ 2ciops }{ 5 } $. Step 1: Write $ cos $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} cos \cdot \frac{2ip}{5} & \xlongequal{\text{Step 1}} \frac{cos}{\color{red}{1}} \cdot \frac{2ip}{5} \xlongequal{\text{Step 2}} \frac{ cos \cdot 2ip }{ 1 \cdot 5 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2ciops }{ 5 } \end{aligned} $$ |
| ④ | Multiply $ins$ by $ \dfrac{2ip}{5} $ to get $ \dfrac{ 2i^2nps }{ 5 } $. Step 1: Write $ ins $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} ins \cdot \frac{2ip}{5} & \xlongequal{\text{Step 1}} \frac{ins}{\color{red}{1}} \cdot \frac{2ip}{5} \xlongequal{\text{Step 2}} \frac{ ins \cdot 2ip }{ 1 \cdot 5 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2i^2nps }{ 5 } \end{aligned} $$ |
| ⑤ | Add $1$ and $ \dfrac{2ciops}{5} $ to get $ \dfrac{ \color{purple}{ 2ciops+5 } }{ 5 }$. Step 1: Write $ 1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |
| ⑥ | Multiply $ins$ by $ \dfrac{2ip}{5} $ to get $ \dfrac{ 2i^2nps }{ 5 } $. Step 1: Write $ ins $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} ins \cdot \frac{2ip}{5} & \xlongequal{\text{Step 1}} \frac{ins}{\color{red}{1}} \cdot \frac{2ip}{5} \xlongequal{\text{Step 2}} \frac{ ins \cdot 2ip }{ 1 \cdot 5 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2i^2nps }{ 5 } \end{aligned} $$ |
| ⑦ | Multiply $ \dfrac{2ciops+5}{5} $ by $ i $ to get $ \dfrac{ 2ci^2ops+5i }{ 5 } $. Step 1: Write $ i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{2ciops+5}{5} \cdot i & \xlongequal{\text{Step 1}} \frac{2ciops+5}{5} \cdot \frac{i}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( 2ciops+5 \right) \cdot i }{ 5 \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2ci^2ops+5i }{ 5 } \end{aligned} $$ |
| ⑧ | Multiply $ins$ by $ \dfrac{2ip}{5} $ to get $ \dfrac{ 2i^2nps }{ 5 } $. Step 1: Write $ ins $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} ins \cdot \frac{2ip}{5} & \xlongequal{\text{Step 1}} \frac{ins}{\color{red}{1}} \cdot \frac{2ip}{5} \xlongequal{\text{Step 2}} \frac{ ins \cdot 2ip }{ 1 \cdot 5 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 2i^2nps }{ 5 } \end{aligned} $$ |
| ⑨ | Add $ \dfrac{2ci^2ops+5i}{5} $ and $ \dfrac{2i^2nps}{5} $ to get $ \dfrac{2ci^2ops+2i^2nps+5i}{5} $. To add expressions with the same denominators, we add the numerators and write the result over the common denominator. $$ \begin{aligned} \frac{2ci^2ops+5i}{5} + \frac{2i^2nps}{5} & = \frac{2ci^2ops+5i}{\color{blue}{5}} + \frac{2i^2nps}{\color{blue}{5}} = \\[1ex] &=\frac{ 2ci^2ops+5i + 2i^2nps }{ \color{blue}{ 5 }}= \frac{2ci^2ops+2i^2nps+5i}{5} \end{aligned} $$ |
| ⑩ | Divide $i-1$ by $ \dfrac{2ci^2ops+2i^2nps+5i}{5} $ to get $ \dfrac{ 5i-5 }{ 2ci^2ops+2i^2nps+5i } $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Write $ i-1 $ as a fraction by putting $ \color{red}{1} $ in the denominator. Step 3: Multiply numerators and denominators. Step 4: Simplify numerator and denominator. $$ \begin{aligned} \frac{i-1}{ \frac{\color{blue}{2ci^2ops+2i^2nps+5i}}{\color{blue}{5}} } & \xlongequal{\text{Step 1}} i-1 \cdot \frac{\color{blue}{5}}{\color{blue}{2ci^2ops+2i^2nps+5i}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{i-1}{\color{red}{1}} \cdot \frac{5}{2ci^2ops+2i^2nps+5i} \xlongequal{\text{Step 3}} \frac{ \left( i-1 \right) \cdot 5 }{ 1 \cdot \left( 2ci^2ops+2i^2nps+5i \right) } = \\[1ex] & \xlongequal{\text{Step 4}} \frac{ 5i-5 }{ 2ci^2ops+2i^2nps+5i } \end{aligned} $$ |