| $$ \begin{aligned}\frac{8+j\cdot8}{j}\cdot8& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{64j+64}{j}\end{aligned} $$ | |
| ① | Multiply $ \dfrac{8+8j}{j} $ by $ 8 $ to get $ \dfrac{64j+64}{j} $. Step 1: Write $ 8 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{8+8j}{j} \cdot 8 & \xlongequal{\text{Step 1}} \frac{8+8j}{j} \cdot \frac{8}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( 8+8j \right) \cdot 8 }{ j \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 64+64j }{ j } = \frac{64j+64}{j} \end{aligned} $$ |