Tap the blue circles to see an explanation.
| $$ \begin{aligned}(8+6i)\cdot(8-6i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}64-48i+48i-36i^2 \xlongequal{ } \\[1 em] & \xlongequal{ }64 -\cancel{48i}+ \cancel{48i}-36i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-36i^2+64\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{8+6i}\right) $ by each term in $ \left( 8-6i\right) $. $$ \left( \color{blue}{8+6i}\right) \cdot \left( 8-6i\right) = 64 -\cancel{48i}+ \cancel{48i}-36i^2 $$ |
| ② | Combine like terms: $$ 64 \, \color{blue}{ -\cancel{48i}} \,+ \, \color{blue}{ \cancel{48i}} \,-36i^2 = -36i^2+64 $$ |