Tap the blue circles to see an explanation.
| $$ \begin{aligned}(8+6i)\cdot(-1+8i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-8+64i-6i+48i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}48i^2+58i-8\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{8+6i}\right) $ by each term in $ \left( -1+8i\right) $. $$ \left( \color{blue}{8+6i}\right) \cdot \left( -1+8i\right) = -8+64i-6i+48i^2 $$ |
| ② | Combine like terms: $$ -8+ \color{blue}{64i} \color{blue}{-6i} +48i^2 = 48i^2+ \color{blue}{58i} -8 $$ |