Tap the blue circles to see an explanation.
| $$ \begin{aligned}(8+3i)\cdot(4+4i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}32+32i+12i+12i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}12i^2+44i+32\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{8+3i}\right) $ by each term in $ \left( 4+4i\right) $. $$ \left( \color{blue}{8+3i}\right) \cdot \left( 4+4i\right) = 32+32i+12i+12i^2 $$ |
| ② | Combine like terms: $$ 32+ \color{blue}{32i} + \color{blue}{12i} +12i^2 = 12i^2+ \color{blue}{44i} +32 $$ |