Tap the blue circles to see an explanation.
| $$ \begin{aligned}(8+2i)\cdot(1+7i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}8+56i+2i+14i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}14i^2+58i+8\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{8+2i}\right) $ by each term in $ \left( 1+7i\right) $. $$ \left( \color{blue}{8+2i}\right) \cdot \left( 1+7i\right) = 8+56i+2i+14i^2 $$ |
| ② | Combine like terms: $$ 8+ \color{blue}{56i} + \color{blue}{2i} +14i^2 = 14i^2+ \color{blue}{58i} +8 $$ |