Tap the blue circles to see an explanation.
| $$ \begin{aligned}(8+15i)\cdot(11+i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}88+8i+165i+15i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}15i^2+173i+88\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{8+15i}\right) $ by each term in $ \left( 11+i\right) $. $$ \left( \color{blue}{8+15i}\right) \cdot \left( 11+i\right) = 88+8i+165i+15i^2 $$ |
| ② | Combine like terms: $$ 88+ \color{blue}{8i} + \color{blue}{165i} +15i^2 = 15i^2+ \color{blue}{173i} +88 $$ |