Tap the blue circles to see an explanation.
| $$ \begin{aligned}(8+12i)\cdot(4+2i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}32+16i+48i+24i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}24i^2+64i+32\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{8+12i}\right) $ by each term in $ \left( 4+2i\right) $. $$ \left( \color{blue}{8+12i}\right) \cdot \left( 4+2i\right) = 32+16i+48i+24i^2 $$ |
| ② | Combine like terms: $$ 32+ \color{blue}{16i} + \color{blue}{48i} +24i^2 = 24i^2+ \color{blue}{64i} +32 $$ |