Tap the blue circles to see an explanation.
| $$ \begin{aligned}(8-3i)\cdot(-7-6i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-56-48i+21i+18i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}18i^2-27i-56\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{8-3i}\right) $ by each term in $ \left( -7-6i\right) $. $$ \left( \color{blue}{8-3i}\right) \cdot \left( -7-6i\right) = -56-48i+21i+18i^2 $$ |
| ② | Combine like terms: $$ -56 \color{blue}{-48i} + \color{blue}{21i} +18i^2 = 18i^2 \color{blue}{-27i} -56 $$ |