Tap the blue circles to see an explanation.
| $$ \begin{aligned}(7+2i)\cdot(7-3i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}49-21i+14i-6i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-6i^2-7i+49\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{7+2i}\right) $ by each term in $ \left( 7-3i\right) $. $$ \left( \color{blue}{7+2i}\right) \cdot \left( 7-3i\right) = 49-21i+14i-6i^2 $$ |
| ② | Combine like terms: $$ 49 \color{blue}{-21i} + \color{blue}{14i} -6i^2 = -6i^2 \color{blue}{-7i} +49 $$ |