Tap the blue circles to see an explanation.
| $$ \begin{aligned}(6v^2+8v+7)(v^2+8v-4)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}6v^4+56v^3+47v^2+24v-28\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{6v^2+8v+7}\right) $ by each term in $ \left( v^2+8v-4\right) $. $$ \left( \color{blue}{6v^2+8v+7}\right) \cdot \left( v^2+8v-4\right) = 6v^4+48v^3-24v^2+8v^3+64v^2-32v+7v^2+56v-28 $$ |
| ② | Combine like terms: $$ 6v^4+ \color{blue}{48v^3} \color{red}{-24v^2} + \color{blue}{8v^3} + \color{green}{64v^2} \color{orange}{-32v} + \color{green}{7v^2} + \color{orange}{56v} -28 = \\ = 6v^4+ \color{blue}{56v^3} + \color{green}{47v^2} + \color{orange}{24v} -28 $$ |