Tap the blue circles to see an explanation.
| $$ \begin{aligned}(6+5i)\cdot(6-5i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}36-30i+30i-25i^2 \xlongequal{ } \\[1 em] & \xlongequal{ }36 -\cancel{30i}+ \cancel{30i}-25i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-25i^2+36\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{6+5i}\right) $ by each term in $ \left( 6-5i\right) $. $$ \left( \color{blue}{6+5i}\right) \cdot \left( 6-5i\right) = 36 -\cancel{30i}+ \cancel{30i}-25i^2 $$ |
| ② | Combine like terms: $$ 36 \, \color{blue}{ -\cancel{30i}} \,+ \, \color{blue}{ \cancel{30i}} \,-25i^2 = -25i^2+36 $$ |