Tap the blue circles to see an explanation.
| $$ \begin{aligned}(6i-6)(-2i-8)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-12i^2-48i+12i+48 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-12i^2-36i+48\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{6i-6}\right) $ by each term in $ \left( -2i-8\right) $. $$ \left( \color{blue}{6i-6}\right) \cdot \left( -2i-8\right) = -12i^2-48i+12i+48 $$ |
| ② | Combine like terms: $$ -12i^2 \color{blue}{-48i} + \color{blue}{12i} +48 = -12i^2 \color{blue}{-36i} +48 $$ |