Tap the blue circles to see an explanation.
| $$ \begin{aligned}(6-8i)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}36-96i+64i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}36-96i-64 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-96i-28\end{aligned} $$ | |
| ① | Find $ \left(6-8i\right)^2 $ using formula. $$ (A - B)^2 = \color{blue}{A^2} - 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 6 } $ and $ B = \color{red}{ 8i }$. $$ \begin{aligned}\left(6-8i\right)^2 = \color{blue}{6^2} -2 \cdot 6 \cdot 8i + \color{red}{\left( 8i \right)^2} = 36-96i+64i^2\end{aligned} $$ |
| ② | $$ 64i^2 = 64 \cdot (-1) = -64 $$ |
| ③ | Combine like terms: $$ -96i+ \color{blue}{36} \color{blue}{-64} = -96i \color{blue}{-28} $$ |