Tap the blue circles to see an explanation.
| $$ \begin{aligned}(6-8i)\cdot(-2-6i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}-12-36i+16i+48i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}48i^2-20i-12\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{6-8i}\right) $ by each term in $ \left( -2-6i\right) $. $$ \left( \color{blue}{6-8i}\right) \cdot \left( -2-6i\right) = -12-36i+16i+48i^2 $$ |
| ② | Combine like terms: $$ -12 \color{blue}{-36i} + \color{blue}{16i} +48i^2 = 48i^2 \color{blue}{-20i} -12 $$ |