Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{\frac{6}{m+3}+\frac{4}{m+5}}{\frac{m+5}{m+3}-\frac{m+5}{6}}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{\frac{10m+42}{m^2+8m+15}}{\frac{-m^2-2m+15}{6m+18}} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{60m+252}{-m^3-7m^2+5m+75}\end{aligned} $$ | |
| ① | Add $ \dfrac{6}{m+3} $ and $ \dfrac{4}{m+5} $ to get $ \dfrac{ \color{purple}{ 10m+42 } }{ m^2+8m+15 }$. To add raitonal expressions, both fractions must have the same denominator. |
| ② | Subtract $ \dfrac{m+5}{6} $ from $ \dfrac{m+5}{m+3} $ to get $ \dfrac{ \color{purple}{ -m^2-2m+15 } }{ 6m+18 }$. To subtract raitonal expressions, both fractions must have the same denominator. |
| ③ | Divide $ \dfrac{10m+42}{m^2+8m+15} $ by $ \dfrac{-m^2-2m+15}{6m+18} $ to get $ \dfrac{60m+252}{-m^3-7m^2+5m+75} $. Step 1: To divide rational expressions, multiply the first fraction by the reciprocal of the second fraction. Step 2: Factor numerators and denominators. Step 3: Cancel common factors. Step 4: Multiply numerators and denominators. Step 5: Simplify numerator and denominator. $$ \begin{aligned} \frac{ \frac{10m+42}{m^2+8m+15} }{ \frac{\color{blue}{-m^2-2m+15}}{\color{blue}{6m+18}} } & \xlongequal{\text{Step 1}} \frac{10m+42}{m^2+8m+15} \cdot \frac{\color{blue}{6m+18}}{\color{blue}{-m^2-2m+15}} = \\[1ex] & \xlongequal{\text{Step 2}} \frac{ 10m+42 }{ \left( m+5 \right) \cdot \color{red}{ \left( m+3 \right) } } \cdot \frac{ 6 \cdot \color{red}{ \left( m+3 \right) } }{ -m^2-2m+15 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 10m+42 }{ m+5 } \cdot \frac{ 6 }{ -m^2-2m+15 } \xlongequal{\text{Step 4}} \frac{ \left( 10m+42 \right) \cdot 6 }{ \left( m+5 \right) \cdot \left( -m^2-2m+15 \right) } = \\[1ex] & \xlongequal{\text{Step 5}} \frac{ 60m+252 }{ -m^3-2m^2+15m-5m^2-10m+75 } = \frac{60m+252}{-m^3-7m^2+5m+75} \end{aligned} $$ |