Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{5j+59}{j+7}\frac{j-7}{j-7}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{5j+59}{j+7}\cdot1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{5j+59}{j+7}\end{aligned} $$ | |
| ① | Simplify $ \dfrac{j-7}{j-7} $ to $ 1$. Factor both the denominator and the numerator, then cancel the common factor. $\color{blue}{j-7}$. $$ \begin{aligned} \frac{j-7}{j-7} & =\frac{ 1 \cdot \color{blue}{ \left( j-7 \right) }}{ 1 \cdot \color{blue}{ \left( j-7 \right) }} = \\[1ex] &= \frac{1}{1} =1 \end{aligned} $$ |
| ② | Multiply $ \dfrac{5j+59}{j+7} $ by $ 1 $ to get $ \dfrac{ 5j+59 }{ j+7 } $. Step 1: Write $ 1 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: Multiply numerators and denominators. Step 3: Simplify numerator and denominator. $$ \begin{aligned} \frac{5j+59}{j+7} \cdot 1 & \xlongequal{\text{Step 1}} \frac{5j+59}{j+7} \cdot \frac{1}{\color{red}{1}} \xlongequal{\text{Step 2}} \frac{ \left( 5j+59 \right) \cdot 1 }{ \left( j+7 \right) \cdot 1 } = \\[1ex] & \xlongequal{\text{Step 3}} \frac{ 5j+59 }{ j+7 } \end{aligned} $$ |