Tap the blue circles to see an explanation.
| $$ \begin{aligned}(5-6i)\cdot(4+6i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}20+30i-24i-36i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-36i^2+6i+20\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{5-6i}\right) $ by each term in $ \left( 4+6i\right) $. $$ \left( \color{blue}{5-6i}\right) \cdot \left( 4+6i\right) = 20+30i-24i-36i^2 $$ |
| ② | Combine like terms: $$ 20+ \color{blue}{30i} \color{blue}{-24i} -36i^2 = -36i^2+ \color{blue}{6i} +20 $$ |