Tap the blue circles to see an explanation.
| $$ \begin{aligned}(5-3i)\cdot(1+i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}5+5i-3i-3i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-3i^2+2i+5\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{5-3i}\right) $ by each term in $ \left( 1+i\right) $. $$ \left( \color{blue}{5-3i}\right) \cdot \left( 1+i\right) = 5+5i-3i-3i^2 $$ |
| ② | Combine like terms: $$ 5+ \color{blue}{5i} \color{blue}{-3i} -3i^2 = -3i^2+ \color{blue}{2i} +5 $$ |