| $$ \begin{aligned}(4x^5+y^5)^2& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}16x^{10}+8x^5y^5+y^{10}\end{aligned} $$ | |
| ① | Find $ \left(4x^5+y^5\right)^2 $ using formula. $$ (A + B)^2 = \color{blue}{A^2} + 2 \cdot A \cdot B + \color{red}{B^2} $$where $ A = \color{blue}{ 4x^5 } $ and $ B = \color{red}{ y^5 }$. $$ \begin{aligned}\left(4x^5+y^5\right)^2 = \color{blue}{\left( 4x^5 \right)^2} +2 \cdot 4x^5 \cdot y^5 + \color{red}{\left( y^5 \right)^2} = 16x^{10}+8x^5y^5+y^{10}\end{aligned} $$ |