Tap the blue circles to see an explanation.
| $$ \begin{aligned}(4+6i)\cdot(2+2i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}8+8i+12i+12i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}12i^2+20i+8\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{4+6i}\right) $ by each term in $ \left( 2+2i\right) $. $$ \left( \color{blue}{4+6i}\right) \cdot \left( 2+2i\right) = 8+8i+12i+12i^2 $$ |
| ② | Combine like terms: $$ 8+ \color{blue}{8i} + \color{blue}{12i} +12i^2 = 12i^2+ \color{blue}{20i} +8 $$ |