Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{4i+3}{5i+2}-2i+3& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{26-7i}{29}-2i+3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{-65i+26}{29}+3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-65i+113}{29}\end{aligned} $$ | |
| ① | Divide $ \, 3+4i \, $ by $ \, 2+5i \, $ to get $\,\, \dfrac{26-7i}{29} $. ( view steps ) |
| ② | Subtract $2i$ from $ \dfrac{26-7i}{29} $ to get $ \dfrac{ \color{purple}{ -65i+26 } }{ 29 }$. Step 1: Write $ 2i $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To subtract raitonal expressions, both fractions must have the same denominator. |
| ③ | Add $ \dfrac{-65i+26}{29} $ and $ 3 $ to get $ \dfrac{ \color{purple}{ -65i+113 } }{ 29 }$. Step 1: Write $ 3 $ as a fraction by putting $ \color{red}{ 1 } $ in the denominator. Step 2: To add raitonal expressions, both fractions must have the same denominator. |