Tap the blue circles to see an explanation.
| $$ \begin{aligned}\frac{40+30i-60}{40+30i+60}& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}\frac{30i-20}{40+30i+60} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}\frac{30i-20}{30i+100} \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}\frac{-11+36i}{109}\end{aligned} $$ | |
| ① | Simplify numerator $$ \color{blue}{40} +30i \color{blue}{-60} = 30i \color{blue}{-20} $$ |
| ② | Simplify denominator $$ \color{blue}{40} +30i+ \color{blue}{60} = 30i+ \color{blue}{100} $$ |
| ③ | Divide $ \, -20+30i \, $ by $ \, 100+30i \, $ to get $\,\, \dfrac{-11+36i}{109} $. ( view steps ) |