Tap the blue circles to see an explanation.
| $$ \begin{aligned}(4-3i)\cdot(6+2i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}24+8i-18i-6i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-6i^2-10i+24\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{4-3i}\right) $ by each term in $ \left( 6+2i\right) $. $$ \left( \color{blue}{4-3i}\right) \cdot \left( 6+2i\right) = 24+8i-18i-6i^2 $$ |
| ② | Combine like terms: $$ 24+ \color{blue}{8i} \color{blue}{-18i} -6i^2 = -6i^2 \color{blue}{-10i} +24 $$ |