Tap the blue circles to see an explanation.
| $$ \begin{aligned}(3+5i)^3& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}27+135i+225i^2+125i^3 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}27+135i-225-125i \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}10i-198\end{aligned} $$ | |
| ① | Find $ \left(3+5i\right)^3 $ using formula $$ (A + B) = A^3 + 3A^2B + 3AB^2 + B^3 $$where $ A = 3 $ and $ B = 5i $. $$ \left(3+5i\right)^3 = 3^3+3 \cdot 3^2 \cdot 5i + 3 \cdot 3 \cdot \left( 5i \right)^2+\left( 5i \right)^3 = 27+135i+225i^2+125i^3 $$ |
| ② | $$ 225i^2 = 225 \cdot (-1) = -225 $$ |
| ③ | $$ 125i^3 = 125 \cdot \color{blue}{i^2} \cdot i =
125 \cdot ( \color{blue}{-1}) \cdot i =
-125 \cdot \, i $$ |
| ④ | Combine like terms: $$ \color{blue}{135i} \color{blue}{-125i} \color{red}{-225} + \color{red}{27} = \color{blue}{10i} \color{red}{-198} $$ |