Tap the blue circles to see an explanation.
| $$ \begin{aligned}3+4i-(8+6i)-(-5i-1)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}3+4i-8-6i-(-5i-1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-2i-5-(-5i-1) \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle3}{\textcircled {3}} } }}}-2i-5+5i+1 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle4}{\textcircled {4}} } }}}3i-4\end{aligned} $$ | |
| ① | Remove the parentheses by changing the sign of each term within them. $$ - \left( 8+6i \right) = -8-6i $$ |
| ② | Combine like terms: $$ \color{blue}{3} + \color{red}{4i} \color{blue}{-8} \color{red}{-6i} = \color{red}{-2i} \color{blue}{-5} $$ |
| ③ | Remove the parentheses by changing the sign of each term within them. $$ - \left( -5i-1 \right) = 5i+1 $$ |
| ④ | Combine like terms: $$ \color{blue}{-2i} \color{red}{-5} + \color{blue}{5i} + \color{red}{1} = \color{blue}{3i} \color{red}{-4} $$ |