Tap the blue circles to see an explanation.
| $$ \begin{aligned}(3+3i)\cdot(8-8i)& \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle1}{\textcircled {1}} } }}}24-24i+24i-24i^2 \xlongequal{ } \\[1 em] & \xlongequal{ }24 -\cancel{24i}+ \cancel{24i}-24i^2 \xlongequal{ } \\[1 em] & \xlongequal{ \color{blue}{ \text{\normalsize{ \htmlClass{explanationCircle explanationCircle2}{\textcircled {2}} } }}}-24i^2+24\end{aligned} $$ | |
| ① | Multiply each term of $ \left( \color{blue}{3+3i}\right) $ by each term in $ \left( 8-8i\right) $. $$ \left( \color{blue}{3+3i}\right) \cdot \left( 8-8i\right) = 24 -\cancel{24i}+ \cancel{24i}-24i^2 $$ |
| ② | Combine like terms: $$ 24 \, \color{blue}{ -\cancel{24i}} \,+ \, \color{blue}{ \cancel{24i}} \,-24i^2 = -24i^2+24 $$ |